いぬおさんのおもしろ数学実験室

おいしい紅茶でも飲みながら数学、物理、工学、プログラミング、そして読書を楽しみましょう

有理数を連分数表示する

 以前、ユークリッドの互除法について書きました。 

www.omoshiro-suugaku.com

この記事の中の例を使います。記事では36,25に対して互除法を実行しています。

f:id:Inuosann:20200923192644p:plain

これを次のように分数の式変形で表します。

f:id:Inuosann:20200923191958p:plain

f:id:Inuosann:20200923192033p:plain

f:id:Inuosann:20200923193623p:plain

割り算をして余りを求めて、の繰り返しなので、やっていることは同じです。最後に出てきた分数を連分数と言います。紙面を節約するため、これを次のようにも書きます。

f:id:Inuosann:20200923192205p:plain

あるいはさらに見やすく次のように書きます。

f:id:Inuosann:20200923192236p:plain

これらを最初の有理数の連分数表示と言います。つまり

f:id:Inuosann:20200923193842p:plain

ということです。実は正の有理数はこうして有限個の自然数によって連分数表示されます。有限連分数と言います。このこと自体は自然数2個に対して実行する互除法が有限個の行で終わることから明らかでしょう。またもちろん有限連分数は有理数です。

 今度は√2を連分数表示してみます。ちょっと面白くなります。